aboutsummaryrefslogtreecommitdiff
path: root/scheme/uk.scm
blob: 6d2a0f469c1be8c913301d70578946eca4c1044a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

; microKanren core from 2013 microKanren paper

; http://webyrd.net/scheme-2013/papers/HemannMuKanren2013.pdf


(import (rnrs lists))


(define (var c) (vector c))
(define (var? x) (vector? x))
(define (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0)))

(define (walk u s)
  (let ((pr (and (var? u) (assp (lambda (v) (var=? u v)) s))))
    (if pr (walk (cdr pr) s) u)))

(define (ext-s x v s) `((,x . ,v) . ,s))

(define (== u v)
  (lambda (sc)
    (let ((s (unify u v (car sc))))
      (if s (unit `(,s . ,(cdr sc))) mzero))))

(define (unit sc) (cons sc mzero))
(define mzero '())

(define (unify u v s)
  (let ((u (walk u s))
        (v (walk v s)))
    (cond
      ((and (var? u) (var? v) (var=? u v)) s)
      ((var? u) (ext-s u v s))
      ((var? v) (ext-s v u s))
      ((and (pair? u) (pair? v))
        (let ((s (unify (car u) (car v) s)))
          (and s (unify (cdr u) (cdr v) s))))
      (else (and (eqv? u v) s)))))

(define (call/fresh f)
  (lambda (sc)
    (let ((c (cdr sc)))
      ((f (var c)) `(,(car sc) . ,(+ c 1))))))

(define (disj g1 g2) (lambda (sc) (mplus (g1 sc) (g2 sc))))
(define (conj g1 g2) (lambda (sc) (bind (g1 sc) g2)))

(define (mplus s1 s2)
  (cond
    ((null? s1) s2)
    ((procedure? s1) (lambda () (mplus s2 (s1))))
    (else (cons (car s1) (mplus (cdr s1) s2)))))

(define (bind s g)
  (cond
    ((null? s) mzero)
    ((procedure? s) (lambda () (bind (s) g)))
    (else (mplus (g (car s)) (bind (cdr s) g)))))

(define-syntax zzz
  (syntax-rules ()
    ((_ g) (lambda (sc) (lambda () (g sc))))))

(define-syntax conj+
  (syntax-rules ()
    ((_ g) (zzz g))
    ((_ g0 g ...) (conj (zzz g0) (conj+ g ...)))))

(define-syntax disj+
  (syntax-rules ()
    ((_ g) (zzz g))
    ((_ g0 g ...) (disj (zzz g0) (disj+ g ...)))))

(define-syntax conde
  (syntax-rules ()
    ((_ (g0 g ...) ...) (disj+ (conj+ g0 g ...) ...))))

(define-syntax fresh
  (syntax-rules ()
    ((_ () g0 g ...) (conj+ g0 g ...))
    ((_ (x0 x ...) g0 g ...)
      (call/fresh (lambda (x0) (fresh (x ...) g0 g ...))))))

(define (pull s) (if (procedure? s) (pull (s)) s))

(define (take-all s)
  (let ((s (pull s)))
    (if (null? s) '() (cons (car s) (take-all (cdr s))))))

(define (take n s)
  (if (zero? n) '()
    (let ((s (pull s)))
      (cond
        ((null? s) '())
        (else (cons (car s) (take (- n 1) (cdr s))))))))

(define (mk-reify sc*)
  (map reify-state/1st-var sc*))

(define (reify-state/1st-var sc)
  (let ((v (walk* (var 0) (car sc))))
    (walk* v (reify-s v '()))))

(define (reify-s v s)
  (let ((v (walk v s)))
    (cond
      ((var? v)
        (let ((n (reify-name (length s))))
          (cons `(,v . ,n) s)))
      ((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
      (else s))))

(define (reify-name n)
  (string->symbol
    (string-append "_" "." (number->string n))))

(define (walk* v s)
  (let ((v (walk v s)))
    (cond
      ((var? v) v)
      ((pair? v) (cons (walk* (car v) s) (walk* (cdr v) s)))
      (else v))))

(define empty-state '(() . 0))
(define (call/empty-state g) (g empty-state))

(define-syntax run
  (syntax-rules ()
    ((_ n (x ...) g0 g ...)
      (mk-reify (take n (call/empty-state (fresh (x ...) g0 g ...)))))))

(define-syntax run*
  (syntax-rules ()
    ((_ (x ...) g0 g ...)
      (mk-reify (take-all (call/empty-state (fresh (x ...) g0 g ...)))))))

(define succeed (== #f #f))
(define fail (== #f #t))