; microKanren core from 2013 microKanren paper ; http://webyrd.net/scheme-2013/papers/HemannMuKanren2013.pdf (import (rnrs lists)) (define (var c) (vector c)) (define (var? x) (vector? x)) (define (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0))) (define (walk u s) (let ((pr (and (var? u) (assp (lambda (v) (var=? u v)) s)))) (if pr (walk (cdr pr) s) u))) (define (ext-s x v s) `((,x . ,v) . ,s)) (define (== u v) (lambda (sc) (let ((s (unify u v (car sc)))) (if s (unit `(,s . ,(cdr sc))) mzero)))) (define (unit sc) (cons sc mzero)) (define mzero '()) (define (unify u v s) (let ((u (walk u s)) (v (walk v s))) (cond ((and (var? u) (var? v) (var=? u v)) s) ((var? u) (ext-s u v s)) ((var? v) (ext-s v u s)) ((and (pair? u) (pair? v)) (let ((s (unify (car u) (car v) s))) (and s (unify (cdr u) (cdr v) s)))) (else (and (eqv? u v) s))))) (define (call/fresh f) (lambda (sc) (let ((c (cdr sc))) ((f (var c)) `(,(car sc) . ,(+ c 1)))))) (define (disj g1 g2) (lambda (sc) (mplus (g1 sc) (g2 sc)))) (define (conj g1 g2) (lambda (sc) (bind (g1 sc) g2))) (define (mplus s1 s2) (cond ((null? s1) s2) ((procedure? s1) (lambda () (mplus s2 (s1)))) (else (cons (car s1) (mplus (cdr s1) s2))))) (define (bind s g) (cond ((null? s) mzero) ((procedure? s) (lambda () (bind (s) g))) (else (mplus (g (car s)) (bind (cdr s) g))))) (define-syntax zzz (syntax-rules () ((_ g) (lambda (sc) (lambda () (g sc)))))) (define-syntax conj+ (syntax-rules () ((_ g) (zzz g)) ((_ g0 g ...) (conj (zzz g0) (conj+ g ...))))) (define-syntax disj+ (syntax-rules () ((_ g) (zzz g)) ((_ g0 g ...) (disj (zzz g0) (disj+ g ...))))) (define-syntax conde (syntax-rules () ((_ (g0 g ...) ...) (disj+ (conj+ g0 g ...) ...)))) (define-syntax fresh (syntax-rules () ((_ () g0 g ...) (conj+ g0 g ...)) ((_ (x0 x ...) g0 g ...) (call/fresh (lambda (x0) (fresh (x ...) g0 g ...)))))) (define (pull s) (if (procedure? s) (pull (s)) s)) (define (take-all s) (let ((s (pull s))) (if (null? s) '() (cons (car s) (take-all (cdr s)))))) (define (take n s) (if (zero? n) '() (let ((s (pull s))) (cond ((null? s) '()) (else (cons (car s) (take (- n 1) (cdr s)))))))) (define (mk-reify sc*) (map reify-state/1st-var sc*)) (define (reify-state/1st-var sc) (let ((v (walk* (var 0) (car sc)))) (walk* v (reify-s v '())))) (define (reify-s v s) (let ((v (walk v s))) (cond ((var? v) (let ((n (reify-name (length s)))) (cons `(,v . ,n) s))) ((pair? v) (reify-s (cdr v) (reify-s (car v) s))) (else s)))) (define (reify-name n) (string->symbol (string-append "_" "." (number->string n)))) (define (walk* v s) (let ((v (walk v s))) (cond ((var? v) v) ((pair? v) (cons (walk* (car v) s) (walk* (cdr v) s))) (else v)))) (define empty-state '(() . 0)) (define (call/empty-state g) (g empty-state)) (define-syntax run (syntax-rules () ((_ n (x ...) g0 g ...) (mk-reify (take n (call/empty-state (fresh (x ...) g0 g ...))))))) (define-syntax run* (syntax-rules () ((_ (x ...) g0 g ...) (mk-reify (take-all (call/empty-state (fresh (x ...) g0 g ...))))))) (define succeed (== #f #f)) (define fail (== #f #t))